书合文秘网 - 设为首页 - 加入收藏
当前位置 首页 > 范文大全 > 公文范文 >

尾流干扰下下游圆柱气动性能的流场机理

作者: 浏览数: 关键词: 机理 圆柱 下游 干扰 性能


打开文本图片集

摘   要:采用大涡模拟方法,在高雷诺数(Re=1.4×105)下,以间距比P/D=1.5~4的静止双圆柱为对象,研究了下游圆柱的气动力系数、风压系数以及流场特性随风向角的变化规律,分析了下游圆柱气动力与流场结构的内在关系,基于圆柱壁面摩擦系数和干扰流态探讨了下游圆柱气动性能的流场机理. 研究表明:对于小间距双圆柱(P/D<3),下游圆柱会受到明显的平均负阻力作用,两个圆柱间隙中方向相反的一对回流(串列)以及高速间隙流(错列)是出现负阻力的流场机理;对于小间距错列双圆柱(P/D=1.5~3),下游圓柱还会受到很大的平均升力作用(内侧升力),下游圆柱的风压停滞点偏移、高速间隙流和间隙侧壁面的分离泡是出现这一升力的主要原因;对于间距较大的错列双圆柱(P/D=3~4),下游圆柱也会受到明显的平均升力作用(外侧升力),但其机理与小间距时不同,是由下游圆柱的风压停滞点偏移及其间隙侧气流分离点后移造成的.

关键词:双圆柱;大涡模拟;高雷诺数;升力机理;负阻力机理

中图分类号:TU 311                                 文献标志码:A

Abstract: To clarify the mechanism of wake interference effect on the downstream cylinder, large eddy simulation(LES) method was adopted. The flow around two static staggered circular cylinders was studied at a high Reynolds number of Re=1.4×105, and the ratio of center-to-center pitch (P) to the diameter of the cylinder(D) ranges from P/D=1.5~4. The aerodynamic coefficients, mean pressure distributions, and flow field of the downstream cylinder were discussed along with the changing of incidence angle. The relationship between aerodynamic forces and flow characteristics was analyzed based on the time-averaged wall shear stress and flow structures. The results show that the reasons for the negative drag force of the downstream cylinder at small pitch ratio(P/D<3) lie in two factors, i.e., a pair of recirculation zone with opposite direction for the tandem configuration and the high-speed gap flow for the staggered arrangement with small incidence angles. At small pitch ratios(P/D=1.5~3),the downstream cylinder is subjected to remarkable mean lift coefficient(inner lift),which is caused by the shift of the stagnation point, high-speed gap flow, and separation bubble. At the moderate pitch ratios(P/D=3~4),the mean lift(outer lift) of the downstream cylinder is affected by the shift of the stagnation point and separation point in the gap side.

Key words: two circular cylinders;large eddy simulation;high Reynolds number;lift mechanism;negative drag mechanism

圆柱型结构在土木工程中应用广泛,且常常以柱群的形式出现,如桥梁并列索、多分裂导线、冷却塔群、烟囱群等[1-3]. 由于两个圆柱之间存在强烈的气动干扰,常会引起下游结构的风荷载增大或引发下游结构发生尾流激振. 研究两个静止圆柱的气动干扰有助于理解尾流激振的干扰机理,因此其气动性能和流场特性受到众多学者关注[4-5]. 但由于双圆柱绕流受多种参数的影响,干扰机理非常复杂,尚有不少问题需要进一步的研究[6-7].

受到上游圆柱的尾流作用,下游圆柱的气动性能与单圆柱有很大差异,并且会随着雷诺数(Re)、圆心间距(P)和风向角(β)的变化发生剧烈波动. 已有研究表明:对于小间距(P/D=1.25~3.0)双圆柱,下游圆柱会受到平均负阻力作用;在小风向角时还会受到很大的平均升力作用,一般称该升力为“内侧升力”(Inner lift)[4,7-8]. 在较大间距(P/D≥3.0)时,下游圆柱也会受到显著的平均升力作用,但其机理不同于内侧升力,文献中称之为“外侧升力”(Outer lift)[4,7-8].

相关文章:

Top