书合文秘网 - 设为首页 - 加入收藏
当前位置 首页 > 范文大全 > 公文范文 >

苦豆子遗传转化体系建立及SaLDC启动子缺失分析

作者: 浏览数: 关键词: 豆子 缺失 遗传 转化 体系


打开文本图片集

[摘要] 药用植物遗传转化体系的建立对其功能基因研究具有重要意义,该研究在已有苦豆子再生体系的基础上,对农杆菌菌液浓度、农杆菌侵染时间、农杆菌与苦豆子愈伤组织的共培养时间、愈伤组织预培养时间、乙酰丁香酮添加方式和乙酰丁香酮浓度6个遗传转化因子进行优化,结果表明在预培养15 d的苦豆子愈伤组织中农杆菌菌液浓度A600为0.9、侵染时间15 min、农杆菌与愈伤组织共培养48 h、并在侵染液中添加AS 200 μmol·L-1时,GUS瞬时转化效率高达83.33%。以苦豆子基因组DNA为模板克隆获得SaLDC上游1 260 bp的启动子序列(GenBank登录号KY038928),将不同长度(310,594,765,924,1 260 bp)的启动子缺失片段分别与GUS报告基因融合,构建的植物表达载体经农杆菌介导转化苦豆子愈伤组织,GUS瞬时表达结果显示,5个不同长度的SaLDC启动子片段均可驱动GUS在苦豆子愈伤组织中的表达,表明克隆所得的SaLDC启动子具有启动活性,以310 bp的片段启动活性最强,为进一步分析该启动子功能奠定了基础。

[关键词] 苦豆子; 赖氨酸脱羧酶(LDC); 启动子基因; GUS瞬时表达; 功能分析

[Abstract] Establishing the genetic transformation system of medicinal plant is important to study their functional genes. Based on the established regeneration system of Sophra alopecuroides, 6 factors of genetic transformation were optimized, that was the concentration of Agrobacterium tumefaciens, the infection time, the co-cultivation time of agrobacterium tumefaciensand S.alopecuroides callus, the preculture time of S.alopecuroides callus, the adding method ofacetosyringone (AS) and the concentration of AS, respectively. The results showed that a maximum genetic transformation efficiency of 83.33% was achieved with 15d-precultured of S.alopecuroides callus, which was infected by A600=0.9 A. tumefaciens for 15 minutes and then co-cultivated for 48 hours with 200 μmol·L-1AS. The promoter sequence (1 260 bp) of upstream SaLDC was cloned from S.alopecuroides genomic DNA (gene bank accession number: KY038928). The deletion fragment of SaLDC promoter with different length (310,594,765,924,1 260 bp) were ligated with the GUS reporter gene to form five plant expression vectors named P310,P594,P765,P924,P1260, which were then transferred into S.alopecuroides callus. The GUS transient expression showed that all 5 different deletion fragment of SaLDC promoter can drive the GUS gene expression in S. alopecuroides callus. The SaLDC promoter we cloned has high promoter activity, and they may facilitate its function analysis in the future.

[Key words] Sophra alopecuroides; lysine decarboxylase (LDC); promoter gene; GUS transient expression; function analysis

苦豆子Sophra alopecuroides L.别名苦豆根、苦甘草和欧苦参等,是豆科槐属多年生草本植物,广泛分布于宁夏、新疆、内蒙古、甘肃、西藏等荒漠、半荒漠和草原边缘地带[1]。苦豆子地下根部粗壮且多侧根,加之其较强的耐旱性、耐盐碱和抗风沙等性能,在西北地区的生态环境中有着重要的保护作用[2]。苦豆子也是我国西北地区重要的药用植物,具有抗肿瘤、抗菌消炎、止痛杀虫、通经活血等功效[3-4],其中氧化苦参碱(oxymatrine,OMA)(又称苦参素)在治疗慢性乙型病毒性肝炎、苦参碱(matrine,MA)在治疗妇科炎症中均有很好的疗效[5],此外,苦参碱生物农药由于具有对人畜毒性低等特点,在我国也有广泛的应用[6]。

OMA和MA属于喹诺里西啶类生物碱(quinolizidine Alkaloids,QAs)[7],QAs是赖氨酸在赖氨酸脱羧酶作用下脱羧产生的戊二胺(尸胺)经过一系列的生化代谢而成[8]。赖氨酸脱羧酶(lysine decarboxylase,LDC)作为QAs生物合成途径的第一个关键酶[9],在OMA和MA生物合成过程中有着至关重要的作用。杨毅等[10]克隆获得了苦豆子SaLDC基因,并發现苦豆子SaLDC的表达和OMA的积累均受干旱胁迫的影响,且基因的表达量与OMA的积累呈正相关关系。逯明辉等[11]利用cDNA-AFLP技术从耐冷性强的黄瓜中获得了132 bp长的LDC部分片段,推测该基因可能在提高种子低温发芽力方面起重要作用。

相关文章:

Top