书合文秘网 - 设为首页 - 加入收藏
当前位置 首页 > 范文大全 > 公文范文 >

PD-1/PD-L1小分子抑制剂的专利研究进展综述

作者: 浏览数: 关键词: 抑制剂 研究进展 综述 分子 专利

摘 要 肿瘤免疫疗法是肿瘤治疗领域的新突破,其中,免疫检查点抑制剂在当今肿瘤免疫疗法中备受瞩目。目前已有抗体类药物上市,可治疗多种类型癌症且疗效显著,与之相关的小分子类抑制剂也成为研发热点。本文就近年来公开的PD-1/PD-L1信号通路的小分子抑制剂专利的最新进展进行综述。

关键词 PD-1/PD-L1 小分子抑制剂 专利

中图分类号:R979.19 文献标志码:A 文章编号:1006-1533(2019)17-0076-05

The research progress of the patent for PD-1/PD-L1 small molecular inhibitor

WANG Qian*

(Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai 201203, China)

ABSTRACT Tumor immunotherapy is a new breakthrough in the field of cancer treatment, in which the immunological checkpoint inhibitor PD-1/PD-L1 has attracted much attention in today’s tumor immunotherapy. Currently, several anti-PD-1 and anti-PD-L1 antibodies have been launched, which can treat many types of tumors with remarkable clinical curative effect, and the related small molecule inhibiters have been becoming research hotspots. The progress in patents published in recent years for small molecule inhibitors which can inhibit the PD-1/PD-L1 signaling pathway is reviewed.

KEy WORDS PD-1/PD-L1; small molecular inhibitors; patent

肿瘤免疫疗法正在改变着癌症治疗的方式,直接针对于程序死亡受体1(PD-1)及其配体(PD-L1)的免疫检查点抑制剂对于多种类型的癌症均显示出良好的临床疗效,甚至被认为是当今最有前景的肿瘤免疫疗法[1]。目前,多个PD-1/PD-L1抗体类药物已相继上市并取得巨大成功。然而,抗体药物也有其自身缺陷,如生产成本高及免疫原性等问题,加之此类药物半衰期较长,一旦注射到体内,副作用就很难缓解。与抗体药物相比,小分子药物有其不可取代的优势,比如口服生物利用度高、在肿瘤微环境中更大的暴露量或跨越生理障碍如血脑屏障等。另外,由于小分子药物半衰期较短,通常不超过24 h,它可通过口服给药的方式维持药效,因此治疗方式更灵活,研究者或临床医生可间歇性给药以平衡副作用的风险[2]。因此,开发PD-1/PD-L1小分子药物逐渐成为热点,本文就这一领域专利报道的最新研究进展进行简要综述。

PD-1/PD-L1小分子抑制剂的研究落后于抗体,继抗体药物成功上市后,此类小分子抑制剂的研发才备受关注,但大多数都处于发现研究阶段,还没有相应的药物上市,进展最快的正处于临床一期。

1 磺胺间甲氧嘧啶和磺胺甲噻二唑类

早在2011年,哈佛大学的Sharpe等[3]就发现一系列磺胺类化合物可调节PD-1/PD-L1的信号通路,选择性抑制PD-1,代表化合物为磺胺间甲氧嘧啶(sulfamonomethoxine,图1,化合物1)和磺胺甲噻二唑(sulfamethizole,图1,化合物2),以期用于治疗与PD-1/PD-L1通路相关的疾病,如自身免疫性疾病、炎症性疾病、过敏、移植排斥、癌症、免疫缺陷等其他与免疫相关的疾病。

百时美-施贵宝公司对大环多肽类化合物也进行了研究,这类化合物同样可有效抑制PD-1与PD-L1的结合作用,代表化合物活性高达纳摩级[23]。试验结果表明该类化合物与PD-L1结合能够增加先前暴露于持久性抗原所產生的记忆T细胞群中IFNγ的释放。类似于抗PD-L1抗体,该类化合物与PD-L1结合时能够增强对抗持续慢性病毒感染的T细胞群中IFNγ的释放。最早的专利公开于2014年,IC50与PD-L1的胞内结合试验结果显示,在Juekat、小鼠B细胞系(LK35.2)及人肺腺癌细胞系(L2987)上,该类化合物可结合PD-L1,且与抗PD-L1单抗的结合位点相同。同时,试验结果表明,该类化合物可与PD-L1结合,化合物46(图10)的 IC50为1 nmol/L。该类化合物可选择性的干扰PD-L1与PD-1及CD80的结合从而自身和PD-L1结合,但是并不能阻断PD-1/PD-L2或者CD80/CTLA4的相互作用。并且,该类化合物还可阻碍重组PD-1-Ig与Jurkat-PD-1细胞的结合,也能阻碍重组PD-1-Ig与具有内源性PD-L1表达的腺癌细胞系L2987或者hPD-L1过表达的小鼠B细胞系LK35.2-hPD-L1的结合[23]。

綜上所述,抑制PD-1/PD-L1信号通路,可有效激活T细胞,用于多种类型疾病的治疗,随着这一靶点相关抗体类药物取得成功,小分子也蓬勃发展起来,国际国内多家公司在研且成果显著,多篇专利相继公开,无论是分子量介于单克隆抗体与传统小分子之间的多肽类化合物,还是传统的小分子化合物都展现出了良好的PD-1/PD-L1信号通路抑制活性,它们或是与PD-1 结合,或是使PD-1聚合,形成二聚物,都可有效阻止PD-1与PD-L1的结合,从而抑制其相互作用,治疗与此通路相关的多种疾病。虽然目前多数化合物仍处在发现研究阶段,我们期待随着研究的日益深入和透彻,在不久的将来会有方便易得的PD-1/PD-L1小分子药物上市。

参考文献

[1] Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors[J]. Int Immunopharmacol, 2018, 62: 29-39.

[2] Huck BR, K?tzner L, Urbahns K. Small molecules drive big improvements in immuno-oncology therapies[J]. Angew Chem Int Ed Engl, 2018, 57(16): 4412-4428.

[3] Sharpe AH, Butte MJ, Oyama S. Modulators of immunoinhibitory receptor pd- 1, and methods of use thereof: WO2011082400[P]. 2011-07-07.

[4] Chupak LS, Zheng X. Compounds useful as immunomodulators: WO2015034820[P]. 2015-03-12.

[5] Abdel-Magid AF. Inhibitors of the PD-1/PD-L1 pathway can mobilize the immune system: an innovative potential therapy for cancer and chronic infections[J]. ACS Med Chem Lett, 2015, 6(5): 489-490.

[6] Chupak LS, Ding M, Martin SW, et al. Compounds useful as immunomodulators: WO2015160641[P]. 2015-10-22.

[7] Yeung KS, Grant-Young KA, Zhu J, et al. 1, 3-Dihydroxyphenyl derivatives useful as immunomodulators: WO2018009505[P]. 2018-01-11.

[8] Yeung KS, Grant-Young KA, Zhu J, et al. Biaryl compounds useful as immunomodulators: WO2018044963[P]. 2018-03-08.

[9] Sasikumar PGN, Ramachandra M, Naremaddepalli SSS. 1,2,4-Oxadiazole derivatives as immunomodulators: WO2015033299[P]. 2015-03-12.

[10] Sasikumar PGN, Ramachandra M, Naremaddepalli SSS. 1,3,4-Oxadiazole and 1,3,4-thiadiazole derivatives as immunomodulators: WO2015033301[P]. 2015-03-12.

[11] Sasikumar PGN, Ramachandra M, Naremaddepalli SSS. 1,2,4-Oxadiazole and thiadiazole compounds as immunomodulators: WO2016142833[P]. 2016-09-15.

[12] 冯志强, 陈晓光, 杨阳, 等. 苄苯醚类衍生物、及其制法和药物组合物与用途: WO2017202273[P]. 2017-11-30.

[13] 冯志强, 陈晓光, 杨阳, 等. 烟醇醚类衍生物、及其制法和药物组合物与用途: WO2017/202274[P]. 2017-11-30.

[14] 冯志强, 陈晓光, 张莉婧, 等. 溴代苄醚衍生物、及其制法和药物组合物与用途: WO2017202275[P]. 2017-11-30.

[15] 冯志强, 陈晓光, 杨阳, 等. 苯醚类衍生物、及其制法和药物组合物与用途: WO2017202276[P]. 2017-11-30.

[16] Liu PC, Volgina A, Wynn R, et al. Tetrahydro imidazo[4,5-C] pyridine derivatives as PD-L1 internalization inducers: WO2018119224[P]. 2018-06-28.

[17] Lu L, Zhang F, Li J, et al. Heterocyclic compounds derivatives as PD-L1 internalization inducers: WO2018119263[P]. 2018-06-28.

[18] Khleif S, Mkrtichyan M, Lebedyeva I. Compositions for modulating PD-1 signal transduction: WO2018100556[P]. 2018-06-07.

[19] Sasikumar PGN, Ramachandra M, Vadlamani SK, et al. Immunosuppression modulating compounds: WO2011161699[P]. 2011-12-29.

[20] Sasikumar PGN, Ramachandra M, Vadlamani SK, et al. Therapeutic compounds for immunomodulation: WO2012168944[P]. 2012-12-13.

[21] Sasikumar PGN, Ramachandra M, Naremaddepalli SSS. Peptidomimetic compounds as immunomodulators: WO2013132317[P]. 2013-09-12.

[22] Sasikumar PGN, Ramachandra M. Immunomodulating cyclic compounds from the BC loop of human PD1: WO2013144704[P]. 2013-10-03.

[23] Miller MM, Mapelli C, Allen MP, et al. Macrocyclic inhibitors of the PD-1/PD-L1 and CD80(B7-1)/PD-L1 protein/protein interactions: WO2014151634[P]. 2014-09-25.

相关文章:

Top