书合文秘网 - 设为首页 - 加入收藏
当前位置 首页 > 范文大全 > 公文范文 >

砷化镓光导开关中电流丝875nm辐射的光致电离效应

作者: 浏览数: 关键词: 电流 致电 辐射 效应 开关


打开文本图片集

摘要:研究高增益砷化镓光导开关中875 nm自发辐射产生的载流子密度分布特征。导出电流丝一端875 nm辐射的光致电离效应规律,计算电流丝一端875 nm自发辐射产生的载流子密度。计算结果表明:紧邻电流丝顶部处的光生载流子密度最大。比较发现875 nm自发辐射的最大光生载流子密度大于890 nm自发辐射的最大光生载流子密度至少1个数量级,但是小于电流丝内载流子密度1~2个数量级。

关键词:光电子学;砷化镓光导开关;电流丝;光生载流子密度

中图分类号:TN365

文献标志码:A 文章编号:2095-5383(2016)02-0061-02

Abstract:The density distribution characteristics of the carrier of 875 nm radiation from spontaneous emission in high gain GaAs photoconductive semiconductor switches (PCSS) were researched. The photoionization effect law of 875 nm radiation from current filament was derived. The photo-generated carrier density ahead of the tip of the filament was computed. The results showed that the maximum density of photo-generated carrier took place at the tip of the filament. It was discovered that the maximum carrier density of 875 nm radiation was at least one order of magnitude larger than the maximum density of the carrier of 890 nm radiation, and 1-2 orders of magnitude lower than the average carrier density inside the filament.

Key words:Optoelectronics; GaAs photoconductive semiconductor switch (PCSS); filament; photogenerated carrier density

光导开关(Photoconductive Semiconductor Switchs,PCSS)在脉冲产生领域具有重要的理论意义和实用价值[1-12]。高增益GaAs PCSS的锁定(lock-on)效应与电流丝(即流注)的出现密切相关,载流子复合的自发辐射和局域雪崩载流子产生是电流丝快速形成的2个主要机制[1-20],电流丝的875 nm自发辐射的拟合辐射复合系数为η(885) ≈ 0.115 4[12-13],其他辐射波长的计算结果表明紧邻电流丝顶部的光生载流子密度最大 [12,14],890 nm自发辐射产生的最大载流子密度比电流丝内平均非平衡载流子密度至少小3个数量级[14]。在此基础上,本文分析了砷化镓光导开关中电流丝顶部875 nm自发辐射产生的载流子密度分布特征,揭示了875 nm辐射产生的最大载流子密度比自发辐射强度最大的890 nm辐射产生的最大载流子密度要大1~2个数量级,阐明了波长等于和小于875 nm自发辐射在产生非平衡载流子密度方面具有主导作用。

3 结语

高增益砷化镓光导开关中电流丝的自发辐射的光致电离效应是其物理机理的主要组成部分,这个工作研究了波长875 nm自发辐射产生的非平衡载流子密度分布,并且与波长890 nm自发辐射的光致电离效应进行了比较。结果表明:虽然875 nm自发辐射产生的最大载流子密度比电流丝内平均非平衡载流子密度小1~2个数量级,但是比890 nm自发辐射产生的最大载流子密度大1~2个数量级,表明波长等于和小于875 nm自发辐射在产生非平衡载流子方面具有重要意义。

参考文献:

[1] MAZZOLA M S,Schoenbach K H,Lakdawala V K,et al.Infrared quenching of conductivity at high electric fields in a bulk,copper-compensated,optically activated GaAs switch[J].IEEE Trans Electron Devices, 1990, 37(12):2499-2505.

[2] SCHOENBACH K H, KENNEY J S, PETERKIN F E, et al. Temporal development of electric field structures in photoconductive GaAs switches[J].Applied Physics Letters, 1993, 63(15):2100.

[3] LOUBRIEL G M, ZUTAVEM F J, HJAMARSON H P, et al. Measurement of the velocity of current filaments in optically triggered, high gain GaAs switches[J]. Applied Physics Letters, 1994, 64(24):3323.

[4] STOUT P J, KUSHNER M J. Modeling of high power semiconductor switches operated in the nonlinear mode[J]. Journal of Appliced Physics, 1996, 79(4):2084.

[5] ZUTAVEM F J, BACA A G, CHOW W W, et al. Semiconductor lasers from photoconductive switch filaments[C]// Pulsed Power Plasma Science, 2001. PPPS-2001. Digest of Technical Papers, 2001:170-173.

[6] KAYASIT P, JOSHI R P, ISLAM N E, et al. Transient and steady state simulations of internal temperature profiles in high-power semi-insulating GaAs photoconductive switches[J]. Journal of Appliced Physics, 2001, 89(2):1411.

[7] ZUTAVEM F J, GLOVER S F, REED K W, et al. Fiber-Optically controlled pulsed power switches[J]. IEEE Trans Plasma Sci, 2008, 36(5):2533-2540.

[8] 刘鸿, 阮成礼. 本征砷化镓光导开关中的流注模型[J].科学通报, 2008, 53(18):2181-2185.

[9] 刘鸿, 阮成礼, 郑理. 砷化镓光导开关的畴电子崩理论分析[J]. 科学通报, 2011, 56(9):679-684.

[10] ZHENG L, LIU H. Carrier injection in high gain GaAs photoconductive semiconductor switches[C]//Advanced Materials Research,2014,5:941-944.

[11] 刘鸿, 阮成礼, 吴明和. 光导开关产生的非线性电脉冲的传输特性[J]. 电子科技大学学报, 2004, 33(3):262-265.

[12] 刘鸿, 郑理, 阮成礼,等. 砷化镓光导开关中电流丝的自发辐射效应[J]. 中国科学:物理学力学天文学, 2014(1):49-54.

[13] 郑理, 刘鸿. 砷化镓光导开关中电流丝的辐射复合系数研究[J]. 成都工业学院学报, 2013(2):10-12.

[14] 刘鸿, 郑理, 杨洪军, 等. 砷化镓光导开关中流注890 nm辐射的光致电离效应[J]. 成都大学学报(自然科学版), 2013, 32(3):247-249.

[15] LIU H, RUAN C. “S-shaped” negative differential conductivity of high gain GaAs photoconductive switches[J]. 2009 Conference on Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics, 2009:529-628.

[16] LIU H, RUAN C. Streamer in high gain GaAs photoconductive semiconductor switches[C]// Pulsed Power Conference, 2009. PPC "09. IEEE. 2009:663-668.

[17] 刘鸿, 阮成礼.高增益砷化镓光导开关中的光致电离效应[J]. 光学学报, 2009, 29(2):496-499.

[18] 刘鸿, 阮成礼.高增益砷化镓光导开关中的特征量分析[J]. 中国激光, 2010, 37(2):394-397.

[19] 刘鸿, 郑理, 杨洪军, 等. 砷化镓光导开关中流注的辐射复合系数[J]. 激光与光电子学进展, 2013, 50(5):176-179.

[20] 刘鸿, 郑理, 杨洪军,等. 砷化镓光导开关中电流丝的自发辐射能量分析[J]. 激光与光电子学进展, 2013, 50(9):184-188.

[21] LEE C H. Picosecond optoelectronic switching in GaAs [J]. Appliced Physics Letters, 1977, 30(2):84.

[22] BLAKEMORE J S. Semiconducting and other major properties of gallium arsenide[J]. Journal of Appliced Physics, 1982, 53 (10): 123-181.

相关文章:

Top