书合文秘网 - 设为首页 - 加入收藏
当前位置 首页 > 范文大全 > 公文范文 >

染料敏化太阳能电池电极制作技术细节

作者: 浏览数: 关键词: 太阳能电池 电极 染料 细节 制作

【摘 要】 本文概述了染料敏华太阳能电池电极制作过程的技术细节。对制作染料敏华太阳能电池两个极板(工作极和对电极)技术细节做了详细概述;对制作电极前期导电玻璃的净化处理方法及过程的技术细节做了特别叙述;简要介绍了染料敏化电池的内部结构和工作原理。

【关键词】 染料敏化太阳能电池 电极 制作细节

在染料敏华太阳能电池制作过程中,两个电极[1]的制作是最重要的制作环节,其制作程序直接影响电池的光电性能(光电转换效率等)。

常用来制作染料敏化太阳电池光阳极的半导体材料主要有纳米TiO2、ZnO、SnO2、和Nb2O5等氧化物[2]。在纳米TiO2薄膜制备领域,目前有两大研究热点:在柔性衬底上制备TiO2薄膜和制备规整有序的纳米TiO2薄膜。为了改善电池的光电性能,人们采用了TiCl4表面处理、表面包覆和掺杂等物理化学修饰技术来改善纳米TiO2电极的特性。TiCl4表面处理可改变TiO2导带位置,增大光电子注入效率[3]。在纳米TiO2表面包覆具有较高导带位置的半导体或绝缘层以形成类似核-壳结构的阻挡层来减少TiO2导带电子和氧化态染料或电解质中的电子受体的复合概率[4]。实验表明,在纳米多孔薄膜中适当的掺杂他类金属离子可以增强电池的光电性能。刘秋萍等以Mg掺杂TiO2薄膜取得了7.12%的转化效率,较未掺杂的电池短路电流提高了26.7%[5]。张盼盼等的研究也表明,在TiO2薄膜中掺杂Zn能提高TiO2导带能级,同时可延长俘获态电子的复合时间常数,提高电池的开路电压[6]。经过二十多年的研究,在对燃料敏化电池的光阳极、染料、电解质、对电极等关键材料的研究取得一些列可喜成果之后,其光电转化效率已经达到了15%的商业化生产标准[7]。

现有文献一般叙述大体制作工序,在实际操作过程中需要有更具体的技术细节才能制作出高质量的电极。因此我们对光阳极的制作过程做了细致研究,以保证实验的稳定性与可重复性。

1 燃料敏化电池的内部结构和工作原理(如图1)

“染料敏化太阳能电池”全称“染料敏化纳米多孔TiO2薄膜太阳能电池”,是模拟自然界中的光合作用原理,采用吸附染料的纳米多孔TiO2半导体膜作为光阳极,并选用适当的氧化-还原电解质,用镀铂的导电玻璃作光阴极。其主要由纳米多孔半导体TiO2薄膜、染料敏化剂、氧化还原电解质、对电极和导电基底结构组成。

当太阳光照射到电池表面时,镶嵌在纳米TiO2薄膜表面的光敏染料吸收光子,染料分子受到激发由基态跃迁到激发态,后TiO2的导带注入电子,此时染料自身转变为氧化钛的正离子。注入到二氧化钛层的电子富集到导电基底,并通过外电路流向对电极,形成电流。染料正离子接受电解质溶液中的电子给体得到电子,自身恢复为还原态,使染料分子再生。电解质中的被氧化的电子给体扩散至对电极,在对电极表面得到电子,被还原,从而完成循环,在整个过程中,表观上化学物质没有发生变化,而光能转化成了电能。

2 染料敏化太阳电池电极的制作细节

燃料敏化电池的光阳极是由导电玻璃基底、在基底导电面结晶而成的半导体氧化物薄膜和吸附于氧化物晶体颗粒上的光敏剂三部分组成,是实现光能向电能转换的关键部件。实验发现,在光阳极的制作过程中,对导电玻璃前期处理不规范,会使电池性能起伏严重,降低实验的可重复性。故而,我们将对导电玻璃的前期处理做了规范,起到了良好的效果。

2.1 对导电玻璃的前期处理(如图2)

切割导电玻璃:按丝网印刷机的网格大小制图,按图在玻璃无导电膜的一面上切割,玻璃刀的斜度为45°为宜,在剖开玻璃时两手平行用力。

打孔:在制作光阴极时需要打孔,打孔位置应预先标记,根据工作面积大小选择打孔数目,在对电极的工作面外侧进行打孔。常用的打孔设备有超声波打孔机,激光打孔机等。

清洗玻璃:用棉球蘸洗衣液清洗导电玻璃,在带有导电材料一面,棉球应沿一个方向擦动;然后,依次使用无水乙醇、丙酮、无水乙醇浸泡,并进行超声处理,每一过程持续30min左右。

烧玻璃:为了去除玻璃上的有机物质制造电池的玻璃以450°的温度烧结,烧结时间为3小时,取出玻璃时温度降到120°。

2.2 制作光阳极(如图3)

(1)制备TiO2薄膜。目前制备TiO2薄膜的方法很多:浸渍法、旋转法、高温溶胶喷射沉积法、丝网印刷法、溅射法等多种技术,本文着重运用丝网印刷技术制备TiO2多孔薄膜电极,使TiO2胶体能够更好的吸附在导电玻璃上,以达到电子外电路输送效率更高的目的,过程如下:

①根据丝网版的印刷位置调整丝网印刷机的印刷范围,利用网格图,将定位玻璃板与TiO2薄膜电极一块放到印刷台上,手调定位板的位置,观察玻璃基底处于丝印图案正下方的位置。②确定位置后,抬起丝网版,用胶带固定住定位玻璃板,并用铅笔轻轻勾勒出玻璃基底的具体位置。③放下丝网版后,在丝印图案边沿一端滴加少量的TiO2胶体,将软质刮刀调整到一定的高度,使刮刀的压力倾斜度约为45°,启动机器,让软质刮刀在丝网版上刮动一次,使胶体在刮刀的作用下通过网孔,均匀的沉积到导电玻璃上,尽量一次完成,多余的胶体回收利用。④抬起丝网版,轻轻移出夹在中间的薄膜电极,置于干净处备用,及时用酒精溶液清洗丝网版及软质刮刀。若要制备多层不同粒径的TiO2薄膜,可采用逐层印刷法,每印刷一层薄膜都必须烧结一次。

将印刷有多孔薄膜的基底放入马弗炉内,膜面朝上,以每分钟15℃的速度升温,于450℃时温恒煅烧15min,当炉温自然冷却至350℃时恒温10min,接而继续以每分钟15℃的速度升温至450℃时恒温15min,最后将电极在马弗炉里面自然冷却,120℃时用镊子取出制备的多孔膜电极。烧结温度不宜过高,主要除去胶体中的水分及有机物,使TiO2形成多孔的高比表面积形状,以吸收更多的染料分子,增大光的捕捉效率,过高的烧结温度反而会导致胶体薄膜的碳化,因此控制温度是极其重要的。

(2)染料色素液的配制。敏化染料作为燃料敏化电池的光捕获天线,它的性能是决定电池光电转换效率的重要因素,它不仅需要很宽的可见光谱吸收,以尽可能多的利用太阳光,而且要紧密地吸附在薄膜电极表面和较好的稳定性,以便于长期循环使用。本文使用了N719商品染料。

称取36mg染料样品放入50mL小烧杯中,用无水乙醇做溶剂,少量多次转移到100ml容量瓶内,快到刻线时用滴管定容,摇匀。最后放入小磁子,用黑色保鲜膜包裹容量瓶外侧,放在磁力搅拌器上搅拌24h充分溶解。

(3)电极的染料敏化。将烧结好的TiO2薄膜电极浸泡到已配好的染料溶液中,密封保存12小时,使染料分子充分吸附在TiO2薄膜上,用镊子取出电极,无水乙醇冲洗电极染料层表面,洗去吸附在表面的染料分子,防止吸附松脱的染料对电子输送的干扰,用吹风机吹干,剩余的染料溶液及无水乙醇回收保存以备下次使用。

2.3 制作对电极

取少量氯铂酸用移液管均匀地涂在处理好的导电玻璃的导电面上,待其晾干后,放入炉子中,使其在温度300°的放置10分钟,420°的放置20分钟,然后降温降到120°时可出炉。

3 结语

本文叙述和总结了制作染料敏华太阳能电池电极的技术细节。对光阳极纳米多孔半导体薄膜和电解质研究的深入,燃料敏化电池的光吸收效率和光电转化效率不断提升。随着燃料敏化电池的光电转化效率达到15%商业化生产的标准,在现有技术的基础上,进一步减低成本、提高效率和稳定性,其在社会生活中的应用将会逐步推广开来,成为硅电池的有力竞争者。

参考文献:

[1]高建华,钱伟君,吴伟,曾毅.染料敏化太阳能电池TiO2薄膜的制备方法[J].理化检验-物理分册,2008,44(8):431-436.

[2]Katoh R, Fumbe A, Yoshihara T, et a1. Efficiencies of Electron Injection from Excited N3 Dye into Nanocrystalline Semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) Films[J]. Journal of Physical Chemistry B, 2004,108(15):4 818-4 822.

[3]李景哲,孔凡太,武国华,黄阳,陈汪超,戴松元.染料敏化太阳电池中TiO2/染料/电解质界面的修饰.物理化学学报,2013,29(9),1851-1864.

[4]Meng Q B, Fu C H, Einaga Y, et al. Assembly of highly ordered three-dimensional porous structure with nanocrystalline TiO2 semiconductors. Chem. Mater.,2002,14(1):83~88.

[5]Liu Q. Photovoltaic Performance Improvement of Dye-Sensitized Solar Cells Based on Mg-Doped TiO2 Thin Films[J]. Electrochimica Acta. 2014, 129:459-462.

[6]张盼盼,朱摇枫,艾希成.锌掺杂对TiO2染料敏化电池光阳极中电荷俘获态分布及电子复合过程的影响.高等学校化学学报,2013, 34(2):418-422.

[7]Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin MK, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature. 2013, 499(7458):316-319.

相关文章:

Top